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1. Introduction

The double-baffled, coaxial waveguide transmission line, shown in Figure 1, is defined by
inner and outer radii, and an arc length. In conventiona applications, the propagating modes
are assumed in the z-direction. The TEz and TMz modes of this geometry, propagation
constants, and guide wavelengths were studied in detail in [Ref. 1]. In this memo, the
waveguide is truncated in the z-direction, and propagation is assumed in the azimuthal
direction. Shown in Figure 2, the Azimuthally Propagating, Truncated, Cylindrical, Coaxial
Waveguide is defined by inner and outer radii, and a depth a in the z-dimension. We are
interested in solving for the azimuthally, or f-directed, propagating modes. First, the
characteristic equations that define the cut off frequencies of each mode are derived, then the
eectric fields are explicitly expressed. Finaly, an example geometry is defined for which the
lowest TE and TM mode cutoff frequencies are computed and graphs of the normalized field
components are presented.

2. Geometry

The geometry of the azimuthally propagating, truncated, coaxia waveguide transmission lineis

shown in Figure 2. Thetransmission lineis defined by isdefined by inner (r,) and outer radii

(r,), and adepth a inthe z-dimension. Propagation is assumed in the azimuthal direction.

3. Wave Equation

The natural coordinate system for the Azimuthally Propagating, Truncated, Cylindrical,
Coaxial Waveguide is the cylindrical coordinate system. The scalar wave equation in

cylindrical coordinatesis

llm} ﬂY(r 1JIZ)9+_11T?y(r ,i'2)+ﬂ?y$2'2] !Z)_'_ki/(r,] ,Z):C (1)

r‘ﬂrg qr g I’ 1

Using the standard separation of variabl es technique the wave equation can be written as
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Figurel. The geometry of the double baffled cylindrical coaxial waveguide: (a) 3-D
per spective drawing; (b) plane view of the xy-plane; and (c) plane view of

the xz-plane.
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Figure2. The geometry of the azimuthally propagating, truncated, cylindrical coaxial
waveguide: (@) 3-D perspective drawing; (b) plane view of the xy-plane;

and (c) plane view of the xz-plane.



Ld d ae dR(r)O gk ngR(r )=0 (29)
d? 2
- FG )= (eb)
& 2@ niz9=0 (z)
dz

where:y (r ,j ,2)=R(r)F(j)4 2, the q are dimensionless propagation constants, and
k?+n*=k>.

4. Boundary Conditions

The boundary conditions on the electric field for the geometry are:

E, =0for z=0,and z=a (33
E :Oforr:rl,r:rz,zzo,andz:a (3b)
E,=0forr =r, andr =r,. (3¢c)

5. Solution of the Separated Wave Equation

The F(j ) and Z(z) equations are harmonic equations with harmonic functions as solutions;

these will be denoted h(qgj ) and hfiz) .

The equationin R(r ) isaBessel equation, and has Bessel function solutions:
J, (k,r ) = the Bessel function of thefirst kind of order g
N,(k, r) = the Bessel function of the second kind of order q
H® (k r) = the Hankel function of thefirst kind of order g

H? (k, r) = the Hankel function of the second kind of order q

Let the function B, (k, r) represent the linearly independent combination of two of the above.

Then, the general solution to the scalar Helmholtz wave equation is:
y =By(k r)h(g )h(nz) 4



6. TE;and TM; Field Components

The electric and magnetic field components can be written in terms of fields that are TE, and

TM,. See Appendix I.

6.1 TM, Field Components

The TM,, field components are found by letting A =uy , where A = the magnetic vector

potential, and u, = unit vector in the z-direction. Then

E=- jWA+- NN xA), (5a)
jwe
1.,
and H==N"A. (5b)
m
Since
NN — R _,. Teélyu 1 7élyu T ély u
NN xA) =NN>uy )=u, —a—;+U ——a—p7+U,—a—n,
TR =Ny )= 5892 Prqj &1z U 1zE&9z Y
and
N"A=N"uy :uriﬂfy-uj ﬂi
rf 1ir
then expanded in cylindrical coordinates the components of the above equations become:
11
e=_1 TV (62) Ho==2D (e
jwre Tz mr 9]
1 11% __ 11y
= 6b Hy =-—— 6e
] jWn.EI,ZT[J- 2 ( ) j mﬂr ( )
H, = f
£, = juy +—— 1 (60) 70 @
jwne 17

6.2 TE; Field Components

The TE, field components are found by letting F=uy , where

potential, and u, = unit vector in the z-direction. Then

F = the electric vector



and H:-jWF+_1 N
jwne

Since

and

N"F=N"uy :uriﬂ—_y- u ﬂl.
r fir

when the above equations are expanded in cylindrical coordinates, the components become:

E=-22IV gy H, =T (8d)
er 9 wire zqr
_1ty 111y
E =——/— 8b S
e (8b) N e T R (8e)

(78)

(7b)

7. Solution of the Separated Wave Equation Subject to the

Boundary Conditions of the Generalized Geometry

Propagating wavesin the f -direction in the truncated coaxial waveguide give rise to harmonic

functions
h(gj )=¢
and, for hfz)
h( 2) =a, sin(nz) +b, cos(nz)
The scalar wave function isthen
y =B,(k r)e " haz)

©

(10)

(11)

subject to the boundary conditions. The solutionsfor the TE, and TM, modesin the guide are

asfollows.



7.1 TM, Field Components

The TM,, electric and magnetic field components in terms of the general wave function are

g=_t T {By(k r)e ™ h(nz)}:iB‘T(kr)e'jq"han)
T jwire Tz ¢ jwre
(129)
_ 1 19 _Giw* 1
E _jw_rreFF{ B,(k r)e " h12)} = prw =B,k r)e " haz)  (120)
i 1 YU & n’d
E =i- —_yB,(k r)e ¥ h(nz)=- jwelt—B (k r)e 9 h 12
4 ,:\ Jw+ JWITE ﬂzzg q( rr)e (nZ) Jwg +k§g q( rr)e an) ( C)
11
H, =-jg==B,(k r)e " h(nz) (12d)
mr
H :_iﬂlz-k_fsc(k r )e 19 h(nz) (12¢)
! m qr m
H. =0 (12f)
d

Note that Bk, r ) = B,(k,r). Since

(k1)
E =0forr=r,,r =1y z=0,and z=a
then

h(2) |-, .= (a, sin(n2) +b, cos(nz)) |, .= 0
issatisfied if:

a,=1,h=0,n=—,and m=0,1,2K .
a

(13)

Note, then, that the cutoff frequencies are defined in the same way as the cutoff frequencies of

standard rectangular guide, i.e., the cutoff frequencies of the TM modes of the azimuthally

propagating, truncated, cylindrical, coaxial waveguide.

The boundary conditions are also satisfied if
By(k 1), ,=0

Let
By (k 1) =a,d,(k 1) +b,N,(k 1), then a,J,(k r) +,Ny(k 1)1, , =0.



And,
a;J (k r)+b,N,(k r,)=0
aq‘]q (kr r 2)+quq(kr I’2) :0

Solving the first equation for

. — Nq(krrl) (14)
aq . ! ‘Jq(krrl)
Substitution into the second equation yields:
_ Nq(krrl) _
aq‘]q(krr2)+quq(krr2)_'bq—‘]q(krr2)+anq(krr2) =0
‘]q(krrl)
Cr,
R B P LAV S
M2 -l =
g k) g
For specific valuesof k, , r, and r ,, thevaluesof q that solve
N, (k. r N(Kkr
ki T2) Nk ) s

(k1) Jy(k,ry)
are the sought after mode numbersthat are true for any non-zero value of kb, . Hence,
Nq (kr r 1)
‘Jq (kf r 1)

Finally, the scalar wave function for the TM, modesis:

h}:landaq:_

é N, (k1
Y =N r)- Sy
é ‘]q(krrl)

Notethat just asingle solution for q ispossible [Ref. 4]. The TM, field components are then

0
J,(k r)ge 9 sin(ng), for n="2 m=123K , and k? + n?=k’,
a

found explicitly as:



_ nkr é _ Nq(krrl) L:" - jqi
E = = gNg(k,r) w—rl)J,gl(k,r)acos(nz)e a (16a)
E =- q ingq(Kr)- Nq(k'rl)Jq(k,r)gsin(nz)e'jq (16b)

jwe r“ g Jq(krrl) g
& noé Ny(k ry) u »

E, = ]W81+ %ngq kr)- Yo I,k r )gsm(nz)e (16¢)

gLl _Natkera) U
H, = anr—qu(krr) Lk Jq(krr)asm(nz)e o (16d)

5 N, (K, 0 g

H, :-%éNgi(k,r)- J:((kr’:l)).]gi(k,r)ésm(nz)e‘ a (16e)
H. =0 (16f)

7.2 TE;Field Components

The TE, electric and magnetic field componentsin terms of the general wave function are;

E = 32 Bk e ha2) (173)
er
k. -
E =—Bgk r)e " h(nz) (17b)
] e r
E,=0 (17¢)
. nk, o
H =-j— B&l:(krr Je 19 h&nz) (17d)
wne
H = 1 B, (k ) hi(nz) (17¢)
wne r
w3 o il
H,=-jwg +—-2B (k r)e'" h€nz) (17f)
& Ko
Since
E, =0for z=0,and z=a.
then

h(2) |, .= a,sin(nz) + b, cos(nz) |

z=0,a



issatisfied if:
- - mp
a,=1,h =0, n= ,andm=123K . (18)
a
From the boundary condition onthe E; component, the general Bessel function, B,(k r ), also

satisfies the boundary conditions if

d 2 X —
d (kr r ) 8Bq(kr r )H|f=r1,r2 - O

Let
By(kir)=a,J (k r)+b,N,(k r),

then

ﬁ{éanq(k, r)+b,Ny(kr )H} |-, ,,=0,0r

ga,Jqk r)+b,N&k gl , =
Substituting for the boundariesr =r, andr =r, givethe equations:
a,J¥k r,)+b,N¥k r,)=0
and
8,38k, 1 ,) +b,NJK, r,) =0.
Solving the first equation above for

. - b Nq(krrl) (19)
aQ' aq q -]S(k,rl)

Substitution into the second equation yields:

-b Nk r 1)J0(Kr 2)+o,NSk, 1 ,) =0

Tk ry) T
Or,
ENGK. 14) U
e—J¢(krr )- N&K.r, )i
. gk ry) SRR
For specific valuesof k, , r, and r ,, thevaluesof q that solve
Nk ) I8k r,)=N&K 1 ,)IHk ry) (20)

10



are the sought after mode numbers that are true for any non-zero value of b, . Hence,

qur rl)
% JUk 1)

solves the boundary condition for r =r,, and thevalue of k. that satisfies Eqn. 20 solves the

h,=1and &=

boundary conditionfor r =r,.

Finally, the scalar wave function for the TE, modesis:
Nk, r,)

By(k 1) =N, (kr )- Jy(kr )Jw(k 0

N(kr) Ik r) =1 Ntk r2) 8 @in(nz)e ¥ for n= 2 m=0,12K , and k2 +n? =K.
é quf 1). a

Notethat again, just asingle solution for g ispossible [Ref. 4]. The TE, field components are

then found explicitly as:

E = jg%qu(krr)- Jo(k 1) Jg(;:: ll))asm(nz)e 1 (213

:%g (K, )- JNK, r)J;(k: j))usm(nz)e Iq (21b)

E,=0 (21c)

=- ]—eNG(k,r) I&K 1) ———= Ntk T2 gcos(nz)e 1 (21d)
Jgkr l)g

H, :-ﬂleN (k1) (k1) N DY e 21¢)
! wie r g Ik 1) §

H, = jwel+ ”—Z_eN (k1 )- k1) Nk DY e (21f)

& ko JHK 1) §

11



8. Waveguide Impedance

The characteristic wave impedances for the Azimuthally Propagating, Truncated, Cylindrical,
Coaxial Waveguide are defined in terms of the dominant field components for the TE and TM

modes. The wave impedance for the TE modeis given by

Z® =E IH,. (229)
while wave impedance for the TM mode is given by
Z™=E,IH,. (22b)

9. Example

Determine the fundamental mode and that mode's cutoff frequency of the Azimuthally
Propagating, Truncated, Cylindrical, Coaxial Waveguide defined by the parameters:
r,=5in=0127m, r , =6in=0.1524m and a = 6.5 inches. Plot the distributions of all field

components at f =1.3 GHz, determine the guide wavelength in the propagating direction.

The fundamental mode is the TEz;; mode (m=1 and q=1). The cutoff frequency is

determined by the standard rectangular guide cutoff frequency

f:i
¢ 2a’

where ¢ =speed of light and a=broad wall dimension. For this case
f.=2.998" 10° /(2" 0.1651) =0.9079 GHz. Shown in Figure 3 is a plot of the numerically

determined values of g as afunction of frequency for the TEz1; mode.

To computethefield distributions of the TEz,; mode at f =1.3 GHz, thevalue of g must first

be determined. Shown inFigure 4 is a graph of the characteristic equation of the TEz11 mode
for an Azimuthally Propagating, Truncated, Cylindrical, Coaxial Waveguide defined by the
parameters: r, =5in=0.127m, r, =6in=0.1524m and a=6.5 inches. The point at which

the curve crosses zero defines the required value of g, inthiscase q =2.72.
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Figure3. Thevalues of q for the TEz;; mode as a function of frequency for an
Azimuthally Propagating, Truncated, Cylindrical, Coaxial Waveguide defined
by the parameters: r, =5in=0.127m, r, =6in=0.1524m and a=65

inches.

Thefield components can now be determined using Equations 21. Shown in Figure 5 are the
normalized electromagnetic field distributions of the various field components for the TEz;;

mode. One notesthat E, and H, are the dominate field components (as expected), since they

closely resemble the fundamental mode field distributionsin standard rectangular guide. The
guide wavelength can be determined numerically by plotting the real component of the phasor
E, component of the electric field of the TEz;; mode as afunction of azimuthal position as

shown in Figure 6. The guide wavelength isfound to be

| =Datree; _5*6- 12, 0 1567 inches
o 2 2 180

which isjust bigger than the free space wavelength at f =1.3 GHz of 9.08 inches, but less than

the rectangular guide wavelength of

I rectangular
9

=12.687 inches. The TE modeimpedance can

becalculatedas Z™ = E, /H,, andinthiscaseisfoundtobe Z™ =181 W.
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Figure4. The characteristic equation of the TEz11 modefor an Azimuthally
Propagating, Truncated, Cylindrical, Coaxial Waveguide defined by the
parameters: r, =5in=0.127m, r , =6in=0.1524m and a=6.5 inches.

Asthe frequency increases, additional propagating modes become possible. For example, at

f =2 GHz, the TEz,; mode will propagate. Thevaueof g =2.9515 isfound numerically,

and the electric field components are shown in Figure 7.

Asthe frequency further increases, the first TM mode can propagate. For example, at f =2.2

GHz, the TMz; mode will propagate. Note that the cutoff frequencies for the TM modes are
not defined by the standard simple rectangular waveguide relations (as was found for the TE
modes). Rather, they are determined through Bessel function relations that are solved
numerically. Thevalueof q=2.998 isfound numerically, and the electric and magnetic field
components are shown in Figure 8. The TM mode impedance can be calculated as

Zz™ =E,/H, ,andinthiscaseisfound tobe Z™ =1140 W.

14
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Azimuthally Propagating, Truncated, Cylindrical, Coaxial Waveguide defined
by the parameters: r, =5in=0.127m, r , =6in=0.1524m and a=6.5

inchesfor the TEz11 mode: (a) normalized electric field; and (b)

normalized magnetic field.
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10. Conclusion
This report derives the cut off frequencies and fields of azimuthally propagating modes in a

truncated, cylindrical waveguide. Waveguide impedances are also derived, and example
computations are shown. The results are useful for designing antenna and transmission

structures conformal to curved and cylindrical surfaces.
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APPENDIX A- About the Wave Equation in Cylindrical
Coordinates’

The natural coordinate system for the Azimuthally Propagating, Truncated, Cylindrical,
Coaxial Waveguide isthe cylindrical coordinate system. And one might be tempted to propose
solutionsthat TE; and TM;. Thiswould not bewise.

The VECTOR wave equation is
(¥*+K5)? =0 (A1)
where the vector operator N?() = N(N x))- N N(). Now this equation reduces to the scalar

wave eguation for Cartesian coordinates, since the unit vectors are constants. Thisisnot soin
cylindrical coordinates, except for the unit vector in the z-direction. When written out,
Equation No. 1 becomes

Fev - Ly - 21y % Ry, - Ly« 2 1y S (@2 )u, +k22 =0

S - S A S
(A2)
Separating thisinto its components yields three equations
Ny, - rizvr - %%Yi +k2Y =0 (A3a)
N*Y; -r—le,- +%%Yr +kiY, =0 (A3Db)
N*Y, +k2Y, =0 (A3c)

Only Equation 3c is a scalar wave equation. In forming the solutions for the potentials, it is
important that we propose solutionsthat are TE, and TM, so that solutions to the scalar wave

equation can be postul ated.

! From Prof. Chalmers Butler's ECE 831 class notes, Clemson University, 1988.
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